Nanomagnet memories approach low-power limit

This content has been archived. It may no longer be relevant

According to Belle Dumé, tiny magnetic memory and logic devices that consume very little energy have been developed by researchers at the University of California, Berkeley. With further improvements, the devices could operate close to the “Landauer limit” of minimum energy consumption because they require no moving electrons to work – something that could revolutionize electronics.

Half a century ago the IBM physicist Rolf Landauer was the first to establish that information and computation are physical processes. He also showed that, contrary to the received wisdom at the time, performing computations does not require a minimum amount of energy but that erasing information does.

He used the newly developed information theory to calculate the minimum amount of energy that a logical operation (such as an AND or OR operation) would consume, given the limitations imposed by the second law of thermodynamics. This law states that an irreversible process – such as a logical operation or erasing a bit of information – dissipates energy that can never be recovered from the system. The minimum amount of energy was calculated to be 18 meV at room temperature, which is now known as the Landauer limit.