Two independent groups of physicists have made important breakthroughs in the control of quantum computers based on trapped ions. Instead of controlling quantum bits (qubits) using multiple laser beams, the teams have used microwave sources, which are much easier to control and integrate within quantum circuits. The work could lead to practical quantum computers that incorporate large numbers of qubits on a single chip.
The most successful quantum-computing system so far has been the ion trap – in which information is encoded in the electron spin states of ions that are confined by electric fields. In such systems, the electron spins of multiple ions can be put into a single quantum state in which they are no longer independent of one another. In this “entangled” state, which has no analogue in classical physics, correlations between ions can be used to perform certain logical operations that would take an unfeasibly long time for a classical computer.